Towards the QCD phase diagram at finite chemical potential

Jana Günther for the Wuppertal-Budapest-Collaboration

November 1st 2016

-∢ ⊒ →

Introduction

Possibilities on the lattice

Overview over current status T_c The Equation of State

My Analysis T_c The Equation of State

문어 세 문어

2

The QCD phase diagram

sorce: C. Bonati et al. axXiv:1311.0473 (2014)

トメヨト

э

The (T, μ_B) -phase diagram of QCD

Our observables: Last Year: T_c

R. Bellwied et al., Phys. Lett. B751, 559 (2015), arXiv:1507.07510

This year: The Equation of State

J. Günther et al., arXiv:1607.02493

→ < ∃ →</p>

The sign problem

The QCD partition function:

$$Z(V, T, \mu) = \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}\bar{\psi}e^{-S_F(U,\psi,\bar{\psi}) - \beta S_G(U)}$$
$$= \int \mathcal{D}U \det M(U)e^{-\beta S_G(U)}$$

- ► For Monte Carlo simulations det M(U)e^{-βS_G(U)} is interpreted as Boltzmann weight
- If there is particle- antiparticle-symmetry det M(U) is real
- If $\mu > 0$ det M(U) is complex

A B M A B M

3

Dealing with the sign problem

- Reweighting technics
- Canonical ensemble \rightarrow 14:20 Vitaly Bornyakov
- Complex Langevin \rightarrow 14:50 Benjamin Jäger
- Density of state methods
- Dual veriables
- Taylor expansion
- Imaginary μ
- ▶ ...

A B M A B M

э.

The Taylor expansion method

The pressure can be written as:

$$\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi_{ijk}^{BQS} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

with X = B, Q, S: conserved charges χ_n^X can be determined on the lattice at $\mu = 0$ as:

$$\chi_n^X = \frac{\partial^n \left(\frac{P}{T^4}\right)}{\partial \left(\frac{\mu_X}{T}\right)^n}$$

With the Taylor coefficients the observables can be extrapolated to finite chemical potentials

3

Imaginary μ

문어 문

Overview over current status

Baryonic chemical potential (MeV)

イロン イロン イヨン イヨン

3

The Equation of State

sorce: Talk of C. Schmidt at Conf2016

Image: Image:

< ∃ →

э

Introduction

Possibilities on the lattice

Overview over current status

T_c The Equation of State

My Analysis *T_c* The Equation of Sta

* 注入 * 注入

2

A ►

T_c The Equation of State

Simulation details

- Action: tree-level Symanzik improved gauge action, with four times stout smeared staggered fermions
- ▶ 2+1+1 flavour, on LCP with pion and kaon mass
- Simulation at $\langle n_S \rangle = 0$ (as for heavy ion collisions, in contrast to simulations with $\mu_s = 0$ or $\mu_S = 0$ where $\mu_S = \frac{1}{3}\mu_B \mu_s$)
- Lattice sizes: $32^3 \times 8$, $40^3 \times 10$, $48^3 \times 12$ and $64^3 \times 16$

•
$$\frac{\mu_B}{T} = i\frac{j\pi}{8}$$
 with $j = 0, 3, 4, 5$

• Two methods of scale setting: f_{π} and w_0 , $Lm_{\pi} > 4$

T_c The Equation of State

Observables

Chiral susceptibility:

$$\chi_{\bar{\psi}\psi} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial (m_q)^2}$$
$$\chi_{\bar{\psi}\psi}^r = \left(\chi_{\bar{\psi}\psi}(T,\beta) - \chi_{\bar{\psi}\psi}(0,\beta)\right) \frac{m_l^2}{m_\pi^4}$$

Chiral condensate:

$$\begin{split} \langle \bar{\psi}\psi \rangle &= \frac{T}{V} \frac{\partial \ln Z}{\partial m_q} \\ \langle \bar{\psi}\psi \rangle' &= -\left(\langle \bar{\psi}\psi \rangle(T,\beta) - \langle \bar{\psi}\psi \rangle(0,\beta)\right) \frac{m_l}{m_\pi^4} \end{split}$$

Strangeness susceptibility:

$$\chi_{SS} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial (\mu_S)^2}$$

S. Borsányi et al (2010, arXiv:1005.3508)

æ

T_c The Equation of State

 $\chi_{\bar{\psi}\psi}$

T_C The Equation of State

Fit function: $\langle \bar{\psi}\psi \rangle^{r}(\mu, T) = A(\mu) (1 + B \tanh [C (T - T_{c}(\mu))] + D (T - T_{c}(\mu)))$ (or $\bar{\psi}\psi^{r}(\mu, T) = A(\mu) (1 + B \arctan [C (T - T_{c}(\mu))] + D (T - T_{c}(\mu))))$

T_c The Equation of Stat

Fit function: $\chi_{SS}(\mu, T) = A(\mu) (1 + B \tanh [C (T - T_c(\mu))] + D (T - T_c(\mu)))$ (or $\chi_{SS}(\mu, T) = A(\mu) (1 + B \arctan [C (T - T_c(\mu))] + D (T - T_c(\mu))))$

くぼう くほう くほう

T_C The Equation of State

Curvature

Curvature function: $\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa \left(\frac{\mu_B}{T_c}\right)^2 + \mathcal{O}(\mu_B^4)$ For error analysis we also fit:

$$C_1(x) = 1 + ax + bx^2$$

$$C_2(x) = \frac{1 + ax}{1 + bx}$$

$$C_3(x) = \frac{1}{1 + ax + bx^2}$$

Continuum extrapolation

Continuum extrapolation:

 $\kappa = \kappa^{\mathsf{c}} + A\left(\frac{1}{N_t}\right)^2$

Combined curvature fit and continuum extrapolation with:

$$rac{T_c(\mu_B)}{T_c(0)} = 1 - \left(\kappa^{\mathsf{c}} + c_1 rac{1}{N_t^2}
ight) \left(rac{\mu_B}{T_c}
ight)^2$$

▶ < Ξ >

э

T_c The Equation of State

Continuum extrapolation

Continuum extrapolation:

 $\kappa = \kappa^{\mathsf{c}} + A\left(\frac{1}{N_t}\right)^2$

Combined curvature fit and continuum extrapolation with:

$$rac{T_c(\mu_B)}{T_c(0)} = 1 - \left(\kappa^{\mathsf{c}} + c_1 rac{1}{N_t^2}\right) \left(rac{\mu_B}{T_c}
ight)^2$$

Extrap. with Nt = 8, 10, 12

< ∃ →

T_c The Equation of State

Continuum extrapolation

Continuum extrapolation:

 $\kappa = \kappa^{c} + A \left(\frac{1}{N_{t}}\right)^{2}$ Combined curvature fit and con-

Combined curvature fit and continuum extrapolation with:

$$rac{T_c(\mu_B)}{T_c(0)} = 1 - \left(\kappa^{\mathsf{c}} + c_1 rac{1}{N_t^2}
ight) \left(rac{\mu_B}{T_c}
ight)^2$$

Extrap. with Nt = 8, 10, 12, 16

Extrap. with Nt = 8, 10, 12

< ∃ →

T_c The Equation of State

Continuum extrapolation

Continuum extrapolation:

 $\kappa = \kappa^{\rm c} + A \left(\frac{1}{N_{\rm t}}\right)^2$ Combined curvature fit and con-

tinuum extrapolation with:

$$rac{T_c(\mu_B)}{T_c(0)} = 1 - \left(\kappa^{\mathsf{c}} + c_1 rac{1}{N_t^2}\right) \left(rac{\mu_B}{T_c}
ight)^2$$

Extrap. with Nt = 8, 10, 12, 16

Extrap. with Nt = 8, 10, 12

Extrap. with Nt = 10, 12, 16

< ∃⇒

T_C The Equation of State

Comparison for different observables

$$\chi_{SS}^{E}$$
: $\langle n_{S} \rangle = 0$ and
 $0.5 \langle B \rangle = \langle Q \rangle$

$$\chi_{SS}$$
: $\langle n_S \rangle = 0$ and
 $0.4 \langle B \rangle = \langle Q \rangle$

< 注 → < 注 → …

æ

T_c The Equation of Stat

T_c extrapolation

Determining $T_c(\mu_B)$ by solving the equation $\frac{T_c(\mu_B)}{T_c(0)} = C_i \left(-\frac{\mu_B^2}{T_c^2(\mu)}\right)$.

Introduction

Possibilities on the lattice

Overview over current status

T_c The Equation of State

My Analysis

 T_c The Equation of State

* 注入 * 注入 -

A ►

æ

T_c The Equation of State

Overview over the Analysis

- 1. Do the simulations at $\langle n_s
 angle pprox 0$
- 2. Extrapolate to $\langle n_s \rangle = 0$ and $\langle n_Q \rangle = 0.4 \langle n_B \rangle$
- 3. Make a fit in the T direction
- 4. Determine everything you need for the observables
- 5. Make a fit in the μ_B direction

- 6. Make a fit in the $\frac{1}{N_{\star}^2}$ direction
- 7. Determine the observables

T_c The Equation of State

Simulation details

- Action: tree-level Symanzik improved gauge action, with four times stout smeared staggered fermions
- ▶ 2+1+1 flavour, on LCP with pion and kaon mass
- Simulation at $\langle n_S \rangle = 0$ (as for heavy ion collisions, in contrast to simulations with $\mu_s = 0$ or $\mu_S = 0$ where $\mu_S = \frac{1}{3}\mu_B \mu_s$)
- \blacktriangleright Lattice sizes: 40 $^3\times10,~48^3\times12$ and 64 $^3\times16$
- $\frac{\mu_B}{T} = i\frac{j\pi}{8}$ with j = 0, 3, 4, 5, 6, 6.5 and 7
- Two methods of scale setting: f_{π} and w_0 , $Lm_{\pi} > 4$

Fit in the T direction

Fit in the μ_B direction

$$\begin{array}{rcl} B_1(\hat{\mu}) &=& a + b\hat{\mu}^2 + c\hat{\mu}^4 \\ B_2(\hat{\mu}) &=& (a + b\hat{\mu}^2)/(1 + c\hat{\mu}^2) \\ B_3(\hat{\mu}) &=& a + b\hat{\mu}^2 + c\sin(\hat{\mu})/\hat{\mu} \end{array}$$

< ∃⇒

< (T) >

2

Extrapolation from different fit functions

Analytical continuation on $N_t = 12$ raw data

Error estimation

- Statistical error: Bootstrap method
- Systematic error:

Using different way of analysis, combining them in a histogram:

- 4 fit functions for the T direction
- 3 fit functions in the μ_B direction
- Doing continuum extrapolation and μ_B -fit in one or two steps
- 2 methods of scale setting: f_{π} and w_0
- 2 temperatures from where we use the extrapolated data

This adds up to 96 ways of analysis

 T_c The Equation of State

Taylor coefficients

Influence of different orders

0.4 $\begin{array}{l} \mathcal{O}\left(\mu_B\right) \\ \mathcal{O}\left(\mu_B^3\right) \end{array}$ 0.35 $\mathcal{O}\left(\mu_B^5\right)$ 0.30.25 n_B/T^3 0.210²⁰²²²²²²²²²² 0.150.10.051.51 $\mathbf{2}$ 2.53 μ_B/T

 $T=145{\rm MeV}$

문어 문

Influence of different orders

 $T=170{\rm MeV}$

э

Τ_C The Equation of State

Trajectories

< ≣⇒

2

 T_c The Equation of State

Equation of state

2

< ∃ >

Conclusion

- ▶ Lattice can investigate the phase diagram at small chemical potential (up to \approx 300 MeV) by analytical continuation via
 - 1. Taylor expansion method
 - 2. Simulations at imaginary μ
- Results for the transition temperature
- Results for the equation of state up to order μ^6
- This approach only works up to a critical point
- \blacktriangleright Other methods have to be found beyond that \longrightarrow two talks this afternoon

(E)